Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(10)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37896199

RESUMO

The nasal mucosa, being accessible and highly vascularized, opens up new opportunities for the systemic administration of drugs. However, there are several protective functions like the mucociliary clearance, a physiological barrier which represents is a difficult obstacle for drug candidates to overcome. For this reason, effective testing procedures are required in the preclinical phase of pharmaceutical development. Based on a recently reported immortalized porcine nasal epithelial cell line, we developed a test platform based on a tissue-compatible microfluidic chip. In this study, a biomimetic glass chip, which was equipped with a controlled bidirectional airflow to induce a physiologically relevant wall shear stress on the epithelial cell layer, was microfabricated. By developing a membrane transfer technique, the epithelial cell layer could be pre-cultivated in a static holder prior to cultivation in a microfluidic environment. The dynamic cultivation within the chip showed a homogenous distribution of the mucus film on top of the cell layer and a significant increase in cilia formation compared to the static cultivation condition. In addition, the recording of the ciliary transport mechanism by microparticle image velocimetry was successful. Using FITC-dextran 4000 as an example, it was shown that this nasal mucosa on a chip is suitable for permeation studies. The obtained permeation coefficient was in the range of values determined by means of other established in vitro and in vivo models. This novel nasal mucosa on chip could, in future, be automated and used as a substitute for animal testing.

2.
Pharmaceutics ; 15(9)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37765214

RESUMO

In recent years, there has been a significant increase in the registration of drugs for nasal application with systemic effects. Previous preclinical in vitro test systems for transmucosal drug absorption studies have mostly been based on primary cells or on tumor cell lines such as RPMI 2650, but both approaches have disadvantages. Therefore, the aim of this study was to establish and characterize a novel immortalized nasal epithelial cell line as the basis for an improved 3D cell culture model of the nasal mucosa. First, porcine primary cells were isolated and transfected. The P1 cell line obtained from this process was characterized in terms of its expression of tissue-specific properties, namely, mucus expression, cilia formation, and epithelial barrier formation. Using air-liquid interface cultivation, it was possible to achieve both high mucus formation and the development of functional cilia. Epithelial integrity was expressed as both transepithelial electrical resistance and mucosal permeability, which was determined for sodium fluorescein, rhodamine B, and FITC-dextran 4000. We noted a high comparability of the novel cell culture model with native excised nasal mucosa in terms of these measures. Thus, this novel cell line seems to offer a promising approach for developing 3D nasal mucosa tissues that exhibit favorable characteristics to be used as an in vitro system for testing drug delivery systems.

3.
Pharmaceutics ; 14(7)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35890346

RESUMO

One key application of organ-on-chip systems is the examination of drug transport and absorption through native cell barriers such the blood-brain barrier. To overcome previous hurdles related to the transferability of existing static cell cultivation protocols and polydimethylsiloxane (PDMS) as the construction material, a chip platform with key innovations for practical use in drug-permeation testing is presented. First, the design allows for the transfer of barrier-forming tissue into the microfluidic system after cells have been seeded on porous polymer or Si3N4 membranes. From this, we can follow highly reproducible models and cultivation protocols established for static drug testing, from coating the membrane to seeding the cells and cell analysis. Second, the perfusion system is a microscopable glass chip with two fluid compartments with transparent embedded electrodes separated by the membrane. The reversible closure in a clamping adapter requires only a very thin PDMS sealing with negligible liquid contact, thereby eliminating well-known disadvantages of PDMS, such as its limited usability in the quantitative measurements of hydrophobic drug molecule concentrations. Equipped with tissue transfer capabilities, perfusion chamber inertness and air bubble trapping, and supplemented with automated fluid control, the presented system is a promising platform for studying established in vitro models of tissue barriers under reproducible microfluidic perfusion conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...